
 1 

Title: Widespread distribution and identification of eight novel microcystins in 

Antarctic cyanobacterial mats 

 

Running Title: Microcystins in Antarctic cyanobacterial mats 

 

Susanna A. Wood 
1, 2

, Doug Mountfort 
1
*, Andrew I. Selwood 

1
, Patrick T. Holland 

1
, 

Jonathan Puddick 
2
, S. Craig Cary 

2, 3
 

 

 

1 
Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand. 

2 
Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, 

New Zealand. 

3
 University of Delaware, College of Marine and Earth Studies, Lewes, DE, 19958, USA. 

 

* Corresponding Author: Tel: 64-03-5482319 

       Fax: 64-03-5469464 

                                        Email: doug.mountfort@cawthron.org.nz 

 

 



 2 

Abstract: 

The microcystin content and cyanobacterial community structure of Antarctic microbial mat 

samples collected from 40 ponds, lakes and hydro-terrestrial environments were 

investigated.  Samples were collected from Bratina Island and four of the Dry Valleys; 

Wrights, Victoria, Miers and Marshall. Enzyme-linked immunosorbent assays (ELISA), 

liquid chromatography mass spectrometry (LC-MS), and protein phosphatase inhibition 

assays (PP-2A) resulted in the identification of low levels (1 - 16 mg/kg dry weight) of 

microcystins in all samples. A plot of indicative potencies of microcystins (ratio PP-

2A:ELISA) versus total microcystins (ELISA) showed a general decrease in potency as total 

microcystin levels increased and a clustering of values from discrete geographic locations. 

LC-MS/MS analysis on selected samples identified eight novel microcystin congeners. The 

low energy collisional activation spectra were consistent with variants of [D-Asp
3
] MC-RR 

and [D-Asp
3
] MC-LR containing glycine [Gly

1
] rather than alanine and combinations of 

homoarginine [hAr
2
] or acetyldemethyl ADDA [ADMAdda

5
] substitutions. Nostoc sp. was 

identified as a microcystin producer using PCR amplification of a region of the 16S rRNA 

gene and the aminotransferase (AMT) domain of the mcyE gene. Automated ribosomal 

intergenic spacer analysis (ARISA) was undertaken to enable a comparison of 

cyanobacterial mat community structure from distant geographical locations. Two-

dimensional multidimensional scaling ordination analysis of the ARISA data showed that in 

general samples from the same geographic location tended to clustered together.  ARISA 

also enabled the putative identification of the microcystin producing Nostoc sp. from 

multiple samples. 
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Introduction 

Extreme conditions including relentless katabatic winds, permanently low temperatures and 

precipitation, and depauparate carbon supply ensure that life in the Dry Valleys of Eastern 

Antarctica is primarily restricted to soil environments (1, 43).  However, in selected above 

surface habitats e.g. lakes, ponds and on moist soil, cyanobacteria have thrived, forming 

thick cohesive mats (50). The cyanobacterial species (predominately Nostocales and 

Oscillatoriales) within these mats are adapted to tolerate harsh physicochemical parameters 

including high salinities and UV radiation.   

 

Cyanobacteria worldwide produce a range of natural toxins collectively known as 

cyanotoxins. The mechanisms of toxicity are very diverse, ranging from hepatotoxicity and 

neurotoxicity, to dermatotoxicity. The most ubiquitous of the cyanotoxins are the 

hepatotoxic microcystins. Microcystins are cyclic peptides and to date, more than 70 

microcystins have been isolated and characterized (55). Microcystins are synthesized non-

ribosomally by a large peptide synthetase and polyketide synthase enzyme complex (48). An 

increasing number of species from both planktonic and benthic habitats are known to 

produce microcystins (17, 23, 42). Despite considerable research, the biological and 

functional role of microcystins is poorly understood. Various hypotheses have been proposed 

including; defence against grazers (27), gene regulation (10), allelopathic interactions (44) 

and intra-specific regulation (39).  Recently, relatively low concentrations (<15 mg/kg 

microcystin-LR dry weight) of microcystins were identified in cyanobacterial mats from 

meltwater ponds on McMurdo Ice Shelf in Antarctica (16, 19).  The identifications of 

microcystins in these mats provides evidence to dispute some of their putative roles, for 

example, defence against grazers (16). To date microcystins have only been identified in 

Antarctica from meltwater ponds on Bratina Island and the extent of their occurrence in 
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other locations in Antarctica was unknown. Additionally, definitive identification of specific 

microcystin producers and information on microcystin variants produced was limited. 

 

In this study samples from 40 ponds, lakes and hydro-terrestrial environments from four Dry 

Valleys (Wrights, Victoria, Marshall and Miers) in Eastern Antarctica and Bratina Island 

were investigated for the presence of microcystins. Variations in total microcystin 

concentration within samples have been reported when different detection methods were 

used (e.g., 26, 28). Therefore, in our study all samples were analysed for microcystins by at 

least two of the following methods; liquid chromatography mass spectrometry (LC-MS), 

protein phosphatase 2A inhibition assay (PP-2A) and enzyme-linked immunosorbent assays 

(ELISA). The genes involved in microcystin synthesis (mcyA-J) have been identified and 

characterised (10, 31, 48) enabling PCR amplification of them to be used as an indication of 

microcystin production potential. Sequencing of a region of the mcyE gene and 16S rDNA 

from uni-cyanobacterial material was used to identify one of the cyanobacterial species 

responsible for microcystin production. 

 

The cyanobacterial community structure of each mat was assessed using automated 

ribosomal intergenic spacer analysis (ARISA).  Subsequent multi-variant analysis of ARISA 

profiles allowed the investigation of correlations between community structure, microcystin 

production and geographical locations to be made and enabled the investigation of the 

influence of water chemistry parameters on cyanobacterial miscellany. 

 

MATERIALS AND METHODS  

Samples and sample collection. Benthic microbial mat material was collected from 13 

meltwater ponds on the McMurdo Ice Shelf, located south of Bratina Island (7800’S, 
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16530’E; January 2004), 12 ponds in Wright Valley (77
o
 31’S, 160

o
45’E; January 2004), 

six ponds in Victoria Valley (7722’S, 16210’E January, 2004) and five locations around 

Lake Miers (78°6′S, 164°0′E; December 2006). Two samples of hydro-terrestrial mats were 

collected in Miers Valley from moist areas in front of Adams Glacier (MVAG1) and Miers 

Glacier (MVMG1; December 2006).  One sample was collected from the shoreline of Lake 

Purgatory (S7803’S 16351’E; December 2006, included in the Miers Valley samples for 

all analyses) and three hydro-terrestrial mats from the upper reaches of Marshall Valley 

(78°03′S, 136°55′E; December 2006). Samples were scraped from the sediment surface 

using a stainless steel spatula (swabbed with alcohol between collections) and placed in 

sterile 50 ml Falcon tubes.   

 

Water chemistry parameters (Cl
-
, SO4

2-
, Ca

2+
, Na

+
, pH) were determined for all samples 

(except Lake Purgatory) as previously described (16, 28). No physicochemical data were 

collected for hydro-terrestrial mats collected in Mier and Marshall valleys. 

 

Isolation of DNA, ARISA fingerprinting and analysis. Sub-samples of the 40 frozen 

microbial mats were lyophilized. DNA was extracted from approximately 0.1 g of 

lyophilized material using the MoBio Power Soil™ kit (Carlsbad, CA, USA) according to 

the manufacturer's protocol.  

 

ARISA PCR reactions were carried out using cyanobacterial specific primers as described 

previously (53). ARISA fragments lengths (AFL) were analysed by Genetic Profiler V.2 (GE 

Healthcare, Auckland, New Zealand) and the data transferred to Microsoft Excel for further 

processing. All AFL information was transposed to presence/absence data for further 

analysis.  ARISA fragment lengths were aligned using an Excel Macro. ARISA fragments 
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lengths that differed by less than 3 bp were considered identical (53). If multiple AFL fell 

within this range then only the AFL with the highest florescence was maintained.  ARISA 

fragment lengths less than 5 times baseline fluorescence in height were removed since they 

could not be fully distinguished from instrument “noise” (14). ARISA fragment lengths 

shorter than 300 bp were removed as they were considered to short to be true ITS’s (53). 

 

Nonmetric multidimensional scaling (MDS) based on Bray-Curtis similarities was 

undertaken using the PRIMER 6 software package (PRIMER-E, Ltd., UK). This ordination 

technique ranks the order of similarity of any two communities as an inverse function of the 

distance between the points representing the communities on the plot (24). Thus 

communities with the highest similarity are represented on the plot by points that are plotted 

closest together. Nonmetric multidimensional scaling was undertaken with 100 random 

restarts and results plotted in two-dimensions.  Plots with a stress value less than 0.20 

provide interpretable information (9). Agglomerative, hierarchical clustering of the Bray-

Curtis similarities was carried out using CLUSTER function of PRIMER 6 and plotted onto 

the two-dimensional MDS at a similarity level of 40%.  

 

Analysis of similarities (ANOSIM) was used to test for significant differences in AFL 

profiles between samples from; Bratina Island, Wright, Victoria, Miers and Marshall valleys.  

ANOSIM produces a sample statistic, R which is a relative measure of separation of the 

priori-defined groups. The R statistic is based both on the difference of mean ranks between 

groups and within groups. An R value of 1 indicates community composition is totally 

different and 0 no difference. A Monte Carlo randomization was used to test the statistical 

significances of R. 
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To assess which combination of water chemistry variables accounted for observed biotic 

patterns the computer program BEST (8) was used. Only samples for which all water 

chemistry data was available were used in the analysis.  

 

Microcystin analysis. Frozen microbial mat samples were lyophilised and the freeze-dried 

samples stored at -18
o
C.  Sub-samples (0.2 g) of ground freeze-dried material were placed in 

50 ml Falcon tubes and 15 ml of 70% methanol added. The samples were ultrasonicated in a 

bath (60 min), vortexed and centrifuged at 20,000 x g at 4
o
C (10 min).  The extraction was 

repeated and the supernatants were combined and dried under nitrogen with heating at 35
o
C.  

The dried extract was solubilized in 2 ml of 20 % methanol in MilliQ water and stored at -

18°C (0.07 g of freeze-dried cyanobacterial material per ml).  For LC-MS analysis, samples 

were filtered through a 0.45 µM filter (Minisart RC 4, Sartorius). 

 

The protein phosphatase inhibition assay was carried out in 96-well plates as described in 

Mountfort et al. (28). The total ADDA containing microcystin/nodularin content in the 

reconstituted extracts were quantified with a competitive indirect ELISA using the methods 

of Fischer et al. (11). The 11 samples collected in 2006 were also analysed using a 

similar ELISA (AgResearch, Ruakura, New Zealand) that has lower cross-reactivity with 

free ADDA and nodularin (Lyn Briggs, pers. comm.). 

 

The reconstituted extracts for samples collected in 2006 and selected samples from Bratina 

Island were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) for 

13 microcystin variants and nodularin (51). Microcystins were separated by LC (Alliance 

2695, Waters Corp., MA) using a 150  2 mm  5 m Luna C18 column (Phenomenex, CA) 

with water/methanol/acetonitrile gradient containing 0.15% formic acid (0.2 ml min
-1

, 10 l 
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injection).  The Quattro Ultima TSQ mass spectrometer (Waters-Micromass, Manchester) 

was operated in ESI
+ 

mode with multiple reaction monitoring (MRM) using MS-MS 

channels set up for microcystin-RR, didesmethyl-RR, demethyl-RR, LR, YR, didesmethyl-

LR, desmethyl-LR, FR, WR, AR, LA, LY, LW and LF, and nodularin. The m/z 135 

fragment ion from the protonated molecular cation was selected for each toxin ([MH2]
2+

 for 

microcystin-RR and variants; MH
+
 for the others). The LC-MS responses were calibrated 

using mixed standard solutions of MC-RR, MC-LR, MC-YR and nodularin (Alexis 

Corpororation, Lausen, Switzerland). The MRM response factor for MC-RR was used for 

quantitation of MC-RR variants and the MC-LR factor for MC-LR variants. Full scan and 

fragment ion spectra were also gathered for samples MVAG1 and MVMG1. Full scan 

spectra identified molecular species for potential microcystins and parent ion scanning 

experiments identified the components yielding the ADDA fragment m/z 135 on collisional 

activation. Daughter ion spectra from the protonated molecular species (collision energy 52 

eV for MH
+
 or 30 eV for MH2

2+
) were gathered for each of the components and examined 

for microcystin structural fragment ions. 

  

Identification of a microcystin producer. The dominant cyanobacteria species in MVMG1 

sample was determined using an Olympus light microscope (BX51, Olympus, Wellington, 

New Zealand). Species identification were made were made with reference to Komárek and 

Anagnostidis (22). Uni-cyanobacterial material of the dominant species was isolated from 

MVMG1 using sterile tweezers. Purity was confirmed using microscopic examination and 

DNA extracted as described above. PCR amplification of a cyanobacterial partial 16S rRNA 

gene segment and a region of the mcyE gene was carried out as described in Jungblut and  

Neilan (2006). PCR products were purified using a High Pure PCR product purification kit 

(Roche Diagnostics) and sequenced Bi-directionally using the BigDye Terminator v3.1 
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Cycle Sequencing Kit (Applied Biosystems, USA). The phylogenetic relatedness of the 16S 

rRNA and mcyE gene sequence obtained in this study was established using sequences from 

the NCBI Genbank database. Sequences generated during this work were deposited in NCBI 

Genbank database under accession numbers EU359045-6.  An ARISA profile was obtained 

from the uni-cyanobacterial DNA material as described above. This profile was then used for 

the putative identification of this species in each of the cyanobacterial mat community 

ARISA profiles. 

 

RESULTS 

Physical and chemical characteristics of ponds. The chemical characteristics of pond 

water overlying mats in the various pond systems are shown in Table 1. Sediments 

underlying the mats from Bratina Island were black in colour producing a sulfidogenic odor.   

In contrast sediments of the Wright and Victoria valleys ponds ranged from coarse gravel to 

sand.  The partial chemical analysis of pond water revealed elevated salt levels within some 

ponds from Bratina Island and Wright and Victoria valleys.  However the salt profiles for the 

Bratina Island ponds differed from those in the Wright and Victoria valleys in that sulphate 

was a major salt constituent while in the latter salt mainly comprised of NaCl.  The pH of the 

pond water trended towards being alkaline with the exception of the surface layers of ponds 

E4 and Ridge (Wright Valley).   

 

Analysis of ARISA.  Analysis of ARISA data for all samples identified a total of 63 distinct 

ARISA fragment lengths (ALF; i.e., peaks).  When AFL where totalled across each of the 

five locations, the highest diversity was observed in the Bratina Ponds (= 28,  x = 6.2), 

followed by Wrights Valley (= 27,  x = 4),   Miers Valley (= 26,  x= 7.1), Victoria 

Valley (= 18,  x= 5.6) and Marshall Valley (= 9,  x= 3). 
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Multivariate analyses showed that cyanobacterial community structure differed among 

sampling locations (ANOSIM R = 0.4, P <0.001). Pair-wise comparisons between each 

sampling location revealed that Bratina and Marshall Valley samples were all significantly 

different from other locations where as Victoria, Miers and Wright valleys did not vary 

markedly (Table 2).  With the exception of MarV1, MarV3 and Ridge, the two-dimensional 

multidimensional scaling (MDS) ordination analysis separated the samples into two large 

groups, united at the similarity level of 40%. Within each of these group samples from the 

same geographic location tended to clustered together (Fig. 1). One exception to this was the 

samples from Marshall Valley were all distant from each other.   

 

To elucidate potential water chemistry parameters responsible for differences in community 

structure among the geographic locations BEST analysis was undertaken. Initial pairwise 

scatter-plots between all combinations of the water chemistry variables suggested a log(1 

+X) transformation of all variables was required (8.) The results from the BEST analysis 

showed that the highest rank correlation (ρ = 0.158, P <0.008) was due a combination of pH, 

Ca and Na. This value is low in comparison with other examples (9), indicating that this set 

of environmental variables has weak explanatory power. 

 

Microcystin detection. Data for microcystins expressed on a g.kg dry wt
-1 

basis are shown 

in Tables 2 and 3.   Microcystins were detected with at least one of the detection methods in 

all samples. With the exception of the higher levels of microcystin observed for the Adams 

and Miers glaciers samples (MVAG1 and MVMG1) no clear differences could be seen 

between microcystin concentrations that could be attributable to geographical location.    

However, when indicative potencies of microcystins (ratio PP-2A: ELISA-ADDA; 27) were 
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plotted against total microcystins (ELISA-ADDA; Fig. 2) several trends became evident: (i) 

generally potency decreased as total microcystin levels increased (this was particularly 

evident for samples from Miers and Marshall valleys) and (ii), values for sites for discrete 

locations tended to cluster (particularly evident for samples from Bratina and Victoria 

valleys).   

 

LC-MS analysis of selected samples from Bratina Island, did not show the presence of 

microcystins.  Analysis of samples from the Miers and Marshall valleys by LC-MS 

identified seven microcystin congeners. LC-MS peaks for parent MC-RR and MC-LR 

congeners were present although the retention times did not exactly match the standards. The 

most prevalent congeners observed using MRM were a desmethyl MC-LR, a didesmethyl 

MC-LR, a desmethyl MC-RR and a desdimethyl MC-RR.  More detailed analysis of samples 

MVMG1 and MVAG1 using parent ion scanning for components yielding the m/z 135 

ADDA fragment did not reveal other microcystin congeners.  However, the relative retention 

time data for the MC-RR and MC-LR congeners found were slightly different to those for 

the parents or known demethylated analogues of these microcystins. Furthermore full scan 

LC-MS revealed the presence of a further four components with MH
+
 1038 and 1052 

(retention region for MC-RR; strong [MH2]
2+

) and MH
+
 995 and 1009 (retention region for 

MC-LR) which did not yield significant m/z 135 on collisional activation. Full daughter ion 

spectra were obtained for these four components and the four major microcystins in the 

extracts of samples MVAG1 and MVMG1.  The spectra were consistent these samples 

containing eight novel variants of [D-Asp
3
] MC-RR and [D-Asp

3
] MC-LR containing glycine 

[Gly
1
] rather than alanine and combinations of homoarginine [hAr

2
] or acetyldemethyl 

ADDA [ADMAdda
5
] substitutions (Fig. 3). MS alone cannot distinguish between the 

isobaric N-methyl dehydroanaline (Mdha) and dehydrobutyrine (Dhb) which is another 
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potential substitution (38). The details of these structural assignments will be published 

elsewhere but are consistent with the analyses of low energy collisionally activated ion 

spectra for similar microcystin variants identified from Nostoc species and Planktothrix 

agardhii  (25, 32, 54). The [Gly
1
] substitution is novel but is supported by several peptide 

fragment ion series (54) and in analogy to those observed for [D-Leu
1
] MC-LR (34).   

 

The microcystin content of samples collected in 2006 was determined using four different 

methods allowing a comparison of results from these methods to be undertaken. There was a 

strong correlation between the LC-MS results and the two ELISA methods (R
2
 = 0.9997, 

ELISA-ADDA and R
2
 = 0.999, ELISA-MC) and between the two ELISA methods (R

2 
= 

0.974). However, the correlation was weak when the PP-2A assay results were compared to 

all other methods (R
2
 = 0.168, LC-MS; R

2
 = 0.160, ELISA-ADDA and R

2
 = 0.187 ELISA–

MC). 

 

Confirmation of a microcystin producer. Based on morphology the dominant species in 

sample MVMG1 was identified as Nostoc sp. with the following features: long and 

irregularly
 
trichomes surrounded by a diffuse mucilaginous envelope; vegetative cells sub-

spherical, 4 ± 2 m wide and 2.8 ± 1.2 m long; heterocytes 5 ± 1 m wide and 6.4 ± 1.4 m 

long.  Segments of the 16S rRNA and the mcyE gene were successfully amplified from the 

purified Nostoc sp. material. The 685 bp 16S rRNA gene sequence (Genbank EU359045) 

was submitted to BlastN (2) and matched at greater than 99% sequence homology to Nostoc 

sp. ANT.LH52B.8 (Genbank AY493593). The 364 bp segment of the mcyE gene (Genbank 

EU359046) and had a high (93%) sequence homology with Nostoc sp. 152 (Genbank 

AY817163). ARISA analysis from the purified Nostoc sp. material identified two distinct 

AFL at lengths of 471 and 733 bp. At least one of these peaks was identified in ARISA 
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profiles from samples; LMM1, LMM2, MVAG1, MVMG1 (Miers Valley) and MarVM3 

(Marshall Valley). 

 

DISCUSSION 

Microcystin production. In this study we have demonstrated that microcystin production by 

cyanobacteria in Antarctica is not confined to the meltwater ponds on McMurdo Ice Shelf 

(16, 18). Using a combination of ELISA, PP-2A and LC-MS, microcystins were detected in 

cyanobacterial mats from four distant geographic locations within the Dry Valleys of Eastern 

Antarctica.  Previous studies (16, 18) detected only low levels of microcystins and this was 

also the case in our study were total microcystin levels by ELISA were all <16 mg.kg
-1

 dry 

weight. These levels are significantly lower than those reported from planktonic 

cyanobacterial blooms (7).  Interestingly, the highest concentrations of microcystins were 

not detected in the samples from the lake and pond mats, but from the hydro-terrestrial mats 

adjacent to the bases of Miers and Adams Glaciers. This is the first report of microcystins 

from hydro-terrestrial mats in Antarctica. Jungblut et al. (18) postulated that the low levels of 

microcystins could be due to either; the low abundance of the microcystin producer within 

the mat community or low levels of biosynthesis by the producer. Nostoc sp. made up a large 

portion of the biomass of sample MVMG1 (sample with highest microcystin concentrations), 

thus we suggest that the former is the most plausible explanation.  

 

Previous studies have reported only two microcystin congeners; [D-Asp
3
]-microcystin-LR 

and microcystin-LR in Antarctic cyanobacterial mat samples (16, 18). The quantitative 

measurements by LC-MS using MRM initially indicated the presence of MC-LR, MC-LR 

and MC-FR with higher proportions of four additional congeners; a desmethyl microcystin-

RR, a desdimethyl microcystin-RR, a desmethyl microcystin-LR and a desdimethyl 
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microcystin-RR (Table 4). However, full scan LC-MS followed by detailed MS/MS 

daughter ion analysis revealed that there were eight major microcystin components which 

had novel structures based on variants of MC-LR and MC-RR and these included four 

ADMAdda variants. The latter were not detected by the MRM or parent ion scan 

experiments because the ADDA fragment at m/z 135 is not significant when the 9-acetoxy 

substitution is present (Fig. 3, 54). ADMAddda microcystin analogues have reported in 

benthic Nostoc strains from Finland (32, 40, 41) and Planktothrix agardhii (planktonic) from 

Denmark (25). This is the first reporting of such variants from Southern Hemisphere 

cyanobacteria. Substitution of hAr for Arg was also relatively common in microcystins from 

Finnish Nostoc sp.  The [D-Ala
1
] in microcystins is generally highly conserved, although 

substitutions by serine or leucine in MC-LR have been reported (34, 41). Therefore the novel 

finding in these Antarctic mats of eight variants of MC-RR and MC-LR all containing [Gly
1
] 

is remarkable. 

 

Hitzfeld et al. (16) and Jungblut et al. (18) hypothesized on potential microcystin producing 

genera; Oscillatoria, Phormidium and Nostoc were all given as likely candidates. The ability 

of Nostoc sp. (in sample MVMG1) to produce microcystins was confirmed by PCR 

amplification and sequencing of a region of the aminotransferase (AMT) domain of the 

mcyE gene. Nostoc species have previously been shown to produce microcystins (40, 41, 

52).  Wood et al. (52) detected high levels of microcystin-RR and a desmethyl microcystin-

RR in benthic Nostoc commune mats collected from a New Zealand lake. The diagnostic 

ARISA fragment lengths (AFL) for this species was observed in only five samples from the 

Miers and Marshall valley regions. Interestingly, four of these samples had the highest total 

microcystin concentrations recorded in this study.  The absence of the Nostoc sp. AFL from 
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other samples indicates that there are other yet to be identified microcystin producers within 

these mat communities. 

 

Several studies have demonstrated variability in microcystin concentrations when applying 

different detection methods (e.g., 3, 28, 52). The ADDA-ELISAs used during the present 

study measure the total amount of ADDA-containing compounds in the sample, with the 

second ELISA having lower cross-reactivity with free ADDA and nodularin (Lyn Briggs, 

pers. comm.). As both ELISAs used antibodies raised against the ADDA moiety it is very 

likely that cross-reactivity to ADMAdda variants was low (25) and therefore the total 

microcystins in these samples were underestimated. Similarly the LC-MS (MRM) analyses 

targeting 13 common ADDA-containing microcystins did not determine the ADMAdda 

variants. This explains the high correlations between results for both ELISA’s and the LC-

MS (MRM) method. Based on the scanning LC-MS data for samples MVAG1 and 

MVMG1, it is estimated that including the four major ADMAdda variants would 

approximately double the total microcystin concentrations reported in Table 4.  The 

correlations were weak (< R
2
 = 0.19) between the PP-2A assay and the ELISA or the LC-MS 

methods with concentrations by PP-2A being consistently lower for samples containing >20 

µg.kg
-1

 microcystins (Table 3). The response of the PP-2A assay varies depending on the 

toxicity of microcystin congeners present in a sample (28) which will explain some of the 

inconsistencies observed when comparing results obtained via these methods. 

 

Mountfort et al. (28) suggested that for samples containing mixtures of microcystin 

congeners the response ratios (ratio of the amount determined by PP-2A equivalent to 

microcystin LR: to that determined by ELISA-ADDA) assigns an indicative toxicity to a 

sample as well as toxin equivalence.  In our study when indicative potencies of microcystins 
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were plotted against total microcystins (as measured by ELISA-ADDA; Fig. 2) samples 

from discrete locations tended to cluster together.  Microcystins were not detected by LC-

MS for the samples from Bratina Island or Victoria and Wrights valleys, but it was presumed 

that the microcystin congener composition for from samples in the same geographic location 

were similar. The two samples with the lowest PP-2A/ELISA ratio (MVMG1 and MVAG1 

from Miers and Marshall valleys) were the samples with the highest total microcystin levels 

and therefore it is likely that the novel MC-LR and MC-RR variants identified in these 

samples by LC-MS have significantly lower PP-2A activities than MC-LR  [Asp
3
] variants 

have been reported to be of lower intraperitoneal (IP) toxicity and while ADDMAdda 

variants were toxic by IP (37, 42), somewhat lower PP-2A activities have been reported (25). 

The effects on toxicity of [Gly
1
] or [hAr

4
] substitution have not been determined. None or 

only low levels of the target 13 ADDA-microcystins were detected by LC-MS in the three 

Miers and Marshall valley samples with the highest PP-2A/ELISA ratio (LMM3, LMM4 and 

MarV2). This potentially indicates the presence of other toxins with high inhibitory potential 

for PP2A.  

 

ARISA and microcystin production. Morphological surveys (e.g., 5, 6) and more recently 

polyphasic approaches using 16S rRNA clone libraries (e.g., 18, 45, 46, 47) have helped 

establish an inventory of Antarctic cyanobacteria and allowed investigations into endemism 

and biogeographical distributions. However, these identification methods are often 

protracted and therefore not applicable for analysis of large sample numbers. Recently a 

sensitive and high-throughput finger-printing method known as automated rRNA intergenic 

spacer analysis (ARISA) has been developed (12). This PCR-based method exploits the 

length heterogeneity of the intergenic spacer region (ITS) between the 16S and 23S 

ribosomal genes. Total community DNA is amplified with a fluorescently labelled 
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oligonucleotide, allowing the electrophoretic step to be performed with an automated system 

in which a laser detects the fluorescent DNA fragments. In this study ARISA was used to 

assess cyanobacterial community structure in 40 samples from five distant locations. This 

enabled us to investigate; (i) the  influenced of community structure on microcystin 

production, (ii) biogeographical distribution and (iii) the effect of  selected water chemistry 

parameters on cyanobacterial community structure. 

 

The nonmetric multidimensional scaling (MDS) analysis of the ARISA data showed 

community structure appears to have little effect on microcystin concentration.  MVAG1 and 

MVMG1 plotted close to each other, however, MarV3 which also had a high concentration 

of microcystins, was distant.  Rather than community structure, we postulate that it is the 

presence and abundance of one or more toxin producing genotypes that influences the 

amount of microcystin in a sample.  Numerous studies have shown that the presence of 

microcystin genes (i.e., toxic genotypes) correlates with detection of microcystins (e.g., 15, 

49).  

 

The study of microcystin production in extreme environments may help in understanding 

their functional role. Within these mats, especially the hydro-terrestrial mats, there are 

minimal grazers and few other phytoplankton (16), thus microcystin production to prevent 

grazing or allelopathy seem unlikely explanations. The low levels of microcystins found in 

Antarctic mats to date suggest minimal biosynthesis is occurring. Although no studies have 

investigated Antarctic cyanobacterial growth in the field it is likely that given the extreme 

cold and dark conditions for many months of the year growth is minimal. Orr and Jones (33) 

in a study on cultured Microcystis sp. showed that microcystin production was limited to the 

phase of growth when cell concentration was increasing and suggest that microcystin plays 
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an important (perhaps essential) role in the cellular metabolism of toxigenic strains. If this 

hypothesis is correct then given the presumably slow growth rate of cyanobacteria in 

Antarctica then this may explain the low microcystin levels.  Microcystins are extremely 

stable and resistant to chemical hydrolysis or oxidation at near neutral pH (42). In the 

inherently cold and often dark Antarctic environment it seems likely that these toxins may 

persist for many months or years. Investigations on Antarctic isolates and on microcystin 

gene expression during different phases of the year are planned to further explore this. 

 

ARISA and community structure. Taton et al. (47) carried out a detailed analysis of 

cyanobacterial diversity in sample from four different ponds on Bratina Island and identified 

between four to 12 operational taxonomic units (OTU’s; based on 16S rRNA gene 

sequences) per pond. In an analogous study, Jungblut et al. (18) identified five to 15 OTU’s 

from three ponds on Bratina Island. A similar diversity was observed in our samples with the 

number of AFL ranging from one to 14.  One caveat when interpreting ARISA data is that 

interoperonic differences in spacer length occur within the genomes of microorganisms (29), 

such that a single species may contribute more than one peak to an ARISA profile. Previous 

studies (e.g., 13, 53) indicate that species of the order Nostocales commonly have two types 

of intergenic spacer regions (i.e., two AFL), whereas Chroococcales and Oscillatoriales have 

only one.  Thus it is highly likely that the number of AFL is greater than the actual number 

of OTU’s.  

 

Morphological studies (e.g., 6, 21, 36) suggest that many cyanobacterial species are 

widespread across the continent. In contrast, recent molecular studies have shown that the 

communities of four lake mats where distinct with 71.4% of OTU’s found only in one 

sample (47). This may however be due to artefacts (e.g., produced during DNA extraction, 
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PCR and cloning; 47) or may reflect the small number of samples used in this study.  The 

MDS analyses of our ARISA profiles suggests that cyanobacterial community structure 

within a geographic location generally does not vary markedly, with most samples showing 

greater than 40% similarity. Interestingly, there were two clusters on the MDS plot.  One 

containing mainly the Wrights and Victoria samples and the other primarily consisting of the 

Bratina Island samples. This result was also shown in the ANOSIM analysis where the 

Bratina samples were significantly different from the samples from Wrights and Victoria 

valleys. Wrights and Victoria valleys sit adjacent to edge other approximately 150 km north 

of Miers Valley and Bratina Island. It seems plausible that the close proximity of these 

valleys has enabled similar cyanobacterial communities to develop. It has been suggested 

that wind is an important dispersal agent for biomass in Antarctica (4, 35) and this may have 

also played a role in structuring the similarity of these communities. The Marshall Valley 

samples did not cluster close to one another and were usually quite distant from the other 

samples. These samples were hydro-terrestrial mats. Unfortunately no physico-chemical data 

was collected for these sites, which may have helped in investigating explanations for the 

community composition differences.  

 

Jungblut et al. (18) suggest that salinity may influence community structure. The ponds and 

lakes in our study spanned a wide range of salinities. The results of the BEST analysis 

indicated that differences in the water chemistry parameters (Cl
-
, SO4

2-
, Ca

2+
,
 
Na

+
, pH) were 

unlikely to be contributing to the community structure. Thus rather than physiochemical 

parameters dictating which cyanobacteria species are present in these ponds we suggest 

some species have adapted to tolerate a wide range of conditions. A similar conclusion was 

found by  Taton et al. (47). Following a comparison of their cyanobacterial OTU’s with 
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sequence databases, they suggest that given the ubiquity of several OTU’s, cyanobacteria 

must have the ability to tolerate a range of harsh environmental conditions.  
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Table 1. Chemical analysis of pond water in ponds from Bratina Island and Wright, Victoria, 

Miers valleys. No data is available for the Marshal Valley, Adams and Miers glacier and 

Lake Purgatory sites. 

  

concentration (g m-3) 

Geographical 

location Ponda Cl- SO4 
2- Ca2+ Na+ pH 

Bratina Island Bambi 550 180 30 310 9.6 

 Brack  1300 8200 100 3800 10.1 

 Caston 270 310 11 300 9.7 

 Heart 840 130 11 480 8.8 

 Moist NDb ND ND ND ND 

 No Name 430 130 30 210 9.3 

 P70 1400 230 24 720 9.7 

 Pancreas 1100 220 29 700 8.9 

 Retro 550 390 46 340 9.6 

 Salt  5100 33000 200 14000 9.7 

 Skua  120 140 8.9 140 9.7 

 Vent 1200 220 30 720 9.1 

 Weather Stn 1400 230 24 740 9.7 

Victoria Valley Basalt  5300 960 1100 1800 8.5 

 River Gauge  4.5 3.2 3.1 1.8 8.1 

 TP Lower  8800 1100 1900 2800 8.9 

 TP Upper  ND 370 870 1200 8.3 

 Upper Victoria 2000 ND ND ND ND 

Wright Valley E3 5.3 12 1.6 6.7 7.9 

 E4 46 120 33 45 8.6 
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 L01 110 160 39 81 9.3 

 L15 49 70 23 35 9.4 

 L16 380 140 28 190 9.2 

 L26 2800 580 91 1300 8.5 

 L3 8.2 18 6.2 7.4 9.3 

 L4 11000 2000 520 6000 8.3 

 L9 750 280 40 460 9 

 Puddle  430 210 43 250 9.5 

 Ridge  31 37 6.1 41 7.1 

Miers Valley Lake Miers  - LMM1  3.9 3 ND ND ND 

 Lake Miers  - LMM2 3.9 3 ND ND ND 

 Lake Miers  - LMM3 3.9 3 ND ND ND 

 Lake Miers  - LMM4 3.9 3 ND ND ND 

 Lake Miers  - LMM5 2.0 3.9 ND ND ND 

a Unofficial names of study ponds/sites 

b Not determined 
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Table 2. ANOSIM statistics for tests involving a comparison of all five sampling locations.  

Comparison 
R 

Statistic 
P value 

Location 1 Location 2   

Bratina    Victoria 0.689 0.001 

Bratina Wright 0.508 0.001 

Bratina Miers 0.401 0.002 

Bratina Marshall 0.788 0.002 

Victoria Wright -0.106 0.800 

Victoria Miers 0.190 0.066 

Victoria Marshall 0.569 0.018 

Wright Miers  0.177 0.027 

Wright Marshall 0.387 0.011 

Miers Marshall  0.504 0.012 

           



 33 

Table 3.  Determination of microcystins in cyanobacterial mat samples taken at various 

sites in the vicinity of Bratina Island, and the Wright, Victoria, Miers and Marshall valley 

regions.  

Geographical   Samplea Total microcystin concentration (g.kg dry wt-1) 

location / Date  PP-2A ELISA-ADDA ELISA-MC LC-MSb 

Bratina Island Bambi 12.4 26.1 - - 

December 2004 Brack 8.8 74.6 - ND 

 Casten 1.1 21.2 - - 

 Heart 4.5 19.6 - - 

 Moist 13.1 12.0 - - 

 No Name  18.7 31.6 - ND 

 P70 5.7 35.6 - - 

 Pancreas 18.4 13.7 - ND 

 Retro 11.7 15.8 - - 

 Salt  30.5 132 - - 

 Skua 11.0 38.2 - - 

 Vent 9.2 25.8 - ND 

 Weather Stn 2.0 8.0 - ND 

Victoria Valley Basalt 2.5 2.4 - - 

December 2004 River Gauge 1.7 1.0 - - 

 TP Lower 1.1 1.8 - - 

 TP Upper 2.6 1.9 - - 

 Upper Victoria 11.9 5.9 - - 

Wright Valley E3 26.0 8.6 - - 

December 2004 E4 5.1 2.8 - - 

 L01 13.4 7.9 - - 

 LI5 10.8 2.4 - - 
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 L16  12.3 9.5 - - 

 L26 57.7 27.3 - - 

 L3 57.6 19.4 - - 

 L4  11.2 0.2 - - 

 L9 11.7 40.0 - - 

 Puddle 0.4 1.3 - - 

 Ridge 1.7 0.0 - - 

Miers Valley LMM1  697 360 223 143 

December 2006 LMM2 92.1 8.2 4.3 3.1 

 LMM3 254 2.1 2.1 2.9 

 LMM4 116 0.7 0.7 <1 

 LMM5 408 89.5 64.2 40.1 

 MVAG1 710 2960 1550 1153 

 MVMG1 1510 15900 7490 6609 

 LPM1 1020 8.3 8.3 <1 

Marshall Valley MarV1 374 187 158 46.6 

December 2006 MarV2 98.3 0.9 0.9 <1 

 MarV3 2610 1070 812 515 

a Unofficial names of study ponds/sites   
b ADDA containing microcystins for LC-MS 
- = not analysed 
ND = not determined  
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Table 4. Concentrations of ADDA microcystin congeners (g. kg dry wt-1) in microbial mat samples from Miers and Marshall valleys determined by liquid 

chromatography mass spectrometry using multiple reaction monitoring.  

 LMM1 LMM2 LMM3 LMM4 LMM5 MVAG1 MVMG1 LPM1 MarV1 MarV2 MarV3 

Desdimethyl microcystin-RR (MC-2)  36.4 0.5 <1 <1 9.3 216 568 <1 1.8 <1 89.4 

Desmethyl microcystin-RR (MC-4) 45.0 0.8 <1 <1 8.6 344 1226 <1 2.9 <1 128 

Microcystin-RR  <1 <1 <1 <1 <1 10.8 29.7 <1 1.3 <1 4.7 

Desdimethyl microcystin-LR (MC-1)  11.5 <1 <1 <1 5.5 137 1253 <1 6.9 <1 76.2 

Desmethyl microcystin-LR (MC-3) 40.0 1.8 2.9 <1 14.8 371 3226 <1 24.5 <1 200 

Microcystin-LR 9.3 <1 <1 <1 1.5 38.6 219 <1 9.2 <1 17.0 

Microcystin-FR  <1 <1 <1 <1 1.5 35.9 87.7 <1 <1 <1 <1 

Total ADDA microcystins 143 3.1 2.9 <1 40.1 1153 6609 <1 46.6 <1 515 
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Figure legends 

Figure 1. Two-dimensional non-metric multidimensional scaling ordination (stress = 0.12) 

based on Bray-Curtis similarities of ARISA fingerprints of cyanobacterial communities from 

various locations in Eastern Antarctica. Points enclosed by dashed line cluster at 40% 

similarity.  Bratina Island, ● Marshall Valley,   Miers Valley,  Wrights Valley,  

Victoria Valley.  

 Figure 2.  Plot of ratio PP-2A: ELISA versus ELISA concentrations for microcystins in 

cyanobacterial mats taken from different sites in a range of geographical locations in 

Eastern Antarctica.   Bratina, ● Marshall Valley,   Miers Valley,  Miers (glacier base 

samples),  Wrights Valley,  Victoria Valley.  

Figure 3. Structures of microcystins RR and LR and the eight novel variants from Antarctic 

cyanobacterial mats MVAG1 and MVMG1 (Miers Valley). 
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Figure 1. 
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Figure 2. 

 

 

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000 10000 100000

ADDA-ELISA µg microcystin kg dry wt-1 

R
a
ti
o

 P
P

-2
A

/E
L

IS
A

 



 39 

Figure 3. 
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 M+H RRTa A X Z R R’ 

MC-LR 995.6 1.000 D-Ala L-Leu L-Arg -CH3 -CH3 

MC-1 967.6 0.981 Gly L-Leu L-Arg -CH3 -H 

MC-3 981.6 0.995 Gly L-Leu L-hAr -CH3 -H 

MC-5 995.6 0.989 Gly L-Leu L-Arg -COCH3 -H 

MC-7 1009.6 1.000 Gly L-Leu L-hAr -COCH3 -H 

MC-RR 1038.7 1.000 D-Ala L-Arg L-Arg -CH3 -CH3 

MC-2 1010.7 0.972 Gly L-Arg L-Arg -CH3 -H 

MC-4 1024.7 0.993 Gly L-Arg L-hAr -CH3 -H 

MC-6 1038.7 0.991 Gly L-Arg L-Arg -COCH3 -H 

MC-8 1052.7 1.009 Gly L-Arg L-hAr -COCH3 -H 

 

    a  Relative Retention Time :  Rt  MC-LR 10.24 min.;  Rt MC-RR 8.55 min. 


